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Abstract. We propose a novel class-driven color transformation aimed
at semantic labeling. In contrast with other approaches elsewhere in the
literature, our approach is a supervised one employing class information
to learn a color transformation. Our method maps image color to a target
space with maximum pairwise distances between classes and minimum
scattering within each of them. To compute the color transformation,
we pose the problem in terms of a composition of two mappings. The
first mapping employs a pairwise discriminant cost function minimized
through a steepest descent optimization to map the image color data onto
a space spanned by the class set. It targets better separability between
distinct classes as well as less scattering within each individual class. The
second mapping corresponds to subspace projection of this class data to
a target space with same dimensionality of image color data. To preserve
distances attained by the first of the mappings, this subspace projection
is effected making use of metric multi-dimensional scaling. We report
our experiments on MSRC-21 and SBD datasets, where our method
consistently improves overall and average performances of well-known
publicly available TextonBoost and DARWIN multiclass segmentation
frameworks at a negligible computational cost. These results confirms
our contribution towards reflection of higher distinction in color space
by imposing better separability in a novel representation which is learned
from class information of the dataset under consideration.

1 Introduction

Color has been used as a cue for numerous tasks in computer vision [1]. Due to
its importance, a number of color spaces and descriptors have been formulated
to address problems spanning from accurate capture and reproduction of images
acquired by digital camera sensors [2] to scene and object recognition [1].

Color, as perceived by the observer, is the result of interactions between light
sources, material reflectance, surface texture and other photometric effects due
to object shape and shadows. Photometric invariance is often achieved by use of
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surface reflectance as a means toward classification and recognition via a descrip-
tor which is robust to changes in illumination, noise, geometric and photometric
effects. For instance, Nayar et al. [3] proposed a method of object recognition
based on the reflectance ratio between object regions. Dror et al. [4] described
a vision system that learned the relationship between surface reflectance and
certain statistics computed from gray-scale images. Slater et al. [5] used a set
of Gaussian filters to derive moment invariants for recognition. Jacobs et al. [6]
employed image ratios for comparing images under variable illumination. Lin et
al. [7] utilized an eigen-space of chromaticity distributions to obtain illumination
direction and color and specularity-invariants for three-dimensional object recog-
nition. Lenz et al. [8] deployed perspective projections in canonical space of color
signals to separate intensity from chromaticity and recover a three-dimensional
color descriptor.

The performance of a number of computer vision methods not only depends
on color descriptor used but also space or gamut in which they are defined [9].
This is why the color in an image may be adjusted and adapted using a suitable
transformation [10]. The selection of an optimal transformation is not straight-
forward since, different color spaces may be better adapted to handle textures
or complex shapes [11]. For segmentation, the CIE, LUV or Lab spaces [12] are
often employed as they map each RGB pixel value in image to a point in color
space for which the pairwise deviation in perceived color is equal to Euclidean
distance in feature space [13].

Here, we note that color transformations found elsewhere in the literature
are often derived by perceptual criteria rather by image information. Thus, we
propose a novel approach to find a color transformation for semantic labeling
based on class information of image dataset for the application at hand. This
transformation is computed via supervised learning from dataset and could be
employed as a general preprocessing before feature extraction step in standard
pipeline of pixel-wise classifiers.

The core idea is to map primary color space i.e. RGB, to a new representa-
tion of the same dimensionality i.e. target space with maximum class separation.
To this end, we decompose the problem into the recovery of two mappings. The
former concerns mapping of the primary color space to a class space spanned
by the classes in the dataset and the latter corresponds to subspace projection
from the class space to above target space. Our proposal in essence follows the
practice of many successful learning schemes, where a combination of two map-
pings could unravel desired structure of data. While our formulation for both
mappings is inspired by well-known machine learning techniques, combination in
this context is a novel contribution. Moreover, our choice of color space, provides
fair comparisons with state-of-the-art which use color features in their experi-
ments. It also achieves a low-cost machinery that could process large amount of
images in mobile platforms.

For the mapping of the primary color to the class space, we employ a method
akin to the pairwise discriminant analysis developed by Fu and Robles-Kelly [14].
Note that here, the aim is to map the color channels to a higher-dimensional



Class-driven Color Transformationfor Semantic Labeling 3

space spanned by the class set using an approach devoid of matrix inversions,
whereas the method in [14] is a subspace projection method. This also contrasts
with approaches such as Linear Discriminant Analysis (LDA) [15], where class-
specific covariance is used to define within-class scattering while between-class
scatter is considered to be uniform for distinct classes. The lack of between-
class scatter specificity [16] is compounded by the burden of dimensionality. To
deal with high-dimensional data, a number of approaches have been proposed.
These include independence rule [17], feature annealed independence rule [18]
and nearest shrunken centroid classifier [19]. Nonetheless, these methods may
still be potentially unstable due to matrix inversions.

As mentioned earlier, the subspace projection is tackled using metric Multi-
dimensional Scaling (MDS) to preserve the distances achieved by the first of our
mappings. Given a highly distinct color representation, it is feasible to utilize any
sophisticated feature sets in classification process. For instance, in our experi-
ments, TextonBoost [20] uses color, histogram of oriented gradients (HOG), and
pixel location features and DARWIN [21] employs RGB color of the pixel, dense
HOG, LBP-like features, and averages over image rows and columns. We validate
our class-driven color transformation by applying it as a general preprocessing
step of semantic labeling process. Experiments conducted on MSRC-21 [22] and
Stanford Background Dataset (SBD) [23] for semantic segmentation shows that
our color transformation consistently improves the overall and average precisions
of both TextonBoost and DARWIN pixel-wise segmentation algorithms at the
cost of a simple matrix multiplication.

The rest of paper is organized as follows. In the next section, we expose
our color transformation method. In Section 3, we discuss the implementation
of our algorithm and its initialization. Finally, in Sections 4 and 5, we report
experiments and then conclude on the work presented here respectively.

2 Class-Driven Color Transformation

To commence, let us define the generic color transformation problem as treated
in this paper. Given the M image color pixels X = {x1,x2, . . . ,xM} labeled
into N distinct classes L = {C1,C2, . . . ,CN}, our goal is to recover a matrix
A ∈ R3×3 that transforms input color pixels xi onto a 3-dimensional vector zi
in the target space such that zi = Axi maximizes the separation between color
pixels in distinct classes and minimizes the scattering in each individual class.

Posed in this way, we formulate the problem as an optimization one where
objective function depends on both, dimensions of the target space and number
of classes in the dataset under consideration. As a result, we decompose the
matrix A as follows

A = BC (1)

where C ∈ RN×3 is a mapping matrix that transforms the input color space to
the N -dimensional class space, spanned by classes in the dataset and B ∈ R3×N

is another mapping that projects the class space onto the output target space.
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With above decomposition, we can introduce our objective function as a
composition of the form

arg min
A=BC

f(A) = h(B) ◦ p(C) (2)

where both h(·) and p(·) are cost functions that take the matrices B and C as
their arguments.

It is worth discussing implications of the formulation above. Note that Equa-
tions 1 and 2 are a direct consequence of properties known for decomposition of
matrices and composition of functions, where the functions p(·) and h(·) have
been composed into objective f(A). Moreover, if p(·) is convex, the optimization
in Eq. (1) can be affected by recovering the matrix C to later optimizing h(·)
with respect to B [24]. The minimization of the cost function h(B) can then be
treated in a manner akin to that used by linear feature extraction methods such
as LDA or Maximum Margin Criterion (MMC) [25] which are often employed
for utilizing label information to learn a linear transformation for classification.
Indeed, since the matrix B is effectively a subspace projection matrix that maps
the class space onto the target space, such methods may be used to optimize
Eq. (1) in case the matrix C is at hand.

Further, by minimizing p(C) and h(B) in consecutive steps and choosing
cost functions which are convex, f(A) can be shown to be also convex [24].
This follows from the composition of a convex function with a non-increasing
one and it is valid since p(C) does not increase once minimized. Our goal of
minimizing h(B) is to preserve the class distinctions induced by minimizing
p(C) while projecting from the class space to the target space. Our inference
on not increasing p(C) comes from the fact that h(B) just tries to fix the class
distances resulted by p(C) and hence, we consider minimization of h(B) as an
independent optimization while p(C) has been minimized.

Thus, in Section 2.1 we turn our attention to mapping the color space to the
class space using a convex cost function and later on, in Section 2.2, we elaborate
on subspace projection of the class space to the target space.

2.1 Mapping of Color Space to Class Space

In order to map color values to the space spanned by classes in the dataset under
consideration, we learn the relevant mapping by using a cost function which
accumulates the combination of costs for pairs of binary classes. This is consistent
with the notion that any multiclass classification problem can be converted to a
number of binary ones by deploying a pairwise fusion framework [26]. This can
also be viewed as a process akin to training of a classifier for every two classes
and making final prediction based on the combination of decisions yielded by
binary classifiers. Moreover, the matrix C can then be interpreted as a mapping
of image color values onto the N -dimensional class space.

Objective Function. We view recovery of C as the optimization of function
p(C) such that pairwise cluster distances are maximized. As a result, we opt for
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objective function presented in [14], given by

arg min
CTC=I

p(C) =

N−1∑
i=1

N∑
j=i+1

βi,jg (Φi,j(C)) (3)

where Φi,j(C) is a class-pair dependent distance function, βi,j is a weight that
moderates contribution of the class pair i, j to the objective function and

g(Φi,j(C)) =
1

1 + exp(γ(Φi,j(C)− τ))
(4)

is a logistic regression function with parameters γ and τ which maps class sep-
arability to pairwise costs. Importantly, g(·) takes values in the range (−∞,∞)
to bounded interval [0, 1]. This choice also implies that the function is monoton-
ically decreasing to assign lower costs to increasing class separability values.

It is consistent with the notion that the optimization problem at hand should
be solved such that the matrix C maximizes the costs, i.e. separability, for every
pair of classes. The target function in Eq. (4) hence aims at maximizing these
costs in a cumulative fashion. This equation also reflects the fact that, to derive
final target function, we require a criterion to measure separability between two
classes in the class space.

Indeed, the choice here is not unique. A straightforward way would be to
use the same objective function as in [16] with different definitions for intra
and inter-class scatter matrices on every pair of classes. However, it involves a
matrix inversion operation for each pairwise within-class scatter matrix. This
is undesirable since it can incur in numerical instability when small training
sets are available for any of the classes or categories under consideration. An-
other way would be to assume an underlying Gaussian distribution for each of
the above classes and employ information theoretic divergence measures, such
as Kullback-Leibler divergence or Bhattacharyya distance with closed form so-
lutions. Unfortunately, this would still require matrix inversion operations and
hence may be unstable for applications with small training sets.

In this paper, we follow [14] and employ the distance between class centroids
in the color space such that

Φi,j(C) = d
(1)
i,j − d

(2)
i,j − d

(3)
i,j (5)

where d
(1)
i,j is the distance between centroids subtracted by d

(2)
i,j and d

(3)
i,j which

are projections of color scatterings for classes, along direction CTµi,j given by

d
(1)
i,j = ||CTµi,j ||

d
(2)
i,j =

√
µT
i,jCCTSiCCTµi,j

||CTµi,j ||

d
(3)
i,j =

√
µT
i,jCCTSjCCTµi,j

||CTµi,j ||
(6)
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Here, µi and Si are the mean and scatter for the ith class of pixels in the
color space and µi,j is defined as µi − µj .

Note that, we made no assumptions or constraints on standard/spherical
cluster distances in our formulation. Both metrics are employed to define class-
pair distance in Eq. (5) via aggregation of radial distances between centroids
and angular projections of color value scatters in Eq. (6) which latter may create
elliptical clusters.

Steepest Descent Optimization. At first glance, Eq. (3) appears to be a hard
optimization problem. Surprisingly, it can be optimized using steepest descent
optimization since it is defined on a Grassmann manifold [27]. In addition to
unitary constraint, as a consequence of developments in [27], it can be shown
that the objective function is invariant to any rotations in transformed feature
space. It also assures that the objective function is a convex one. Thus, by
building on recent advances in optimization theory, we can extend unconstrained
optimization methods in Euclidean space to Grassmann manifold. Here, we use
a projection-based steepest descent with backtracking line search based on [28].

The objective function above can be optimized using a steepest descent
method whereby at iteration t the matrix C can be updated using the rule

C(t+1) = C(t) + λ∆C(t) (7)

where λ is a step-size variable and the descent direction is given by

∆C(t) = −(I−C(t)TC(t))∇Cp(C
(t)) (8)

One of the main benefits of this steepest descent approach is that, in contrast
to traditional subspace projection methods, the optimization of p(·) can be ef-
fected without any need for matrix inversions. Moreover, note that the function
Φi,j(C) is not a metric in the sense that it can be negative. Nonetheless, this is
not a problem as we are not using it directly for optimization purpose, rather it
is treated as a variable in the objective function.

To appreciate this more clearly, we proceed to compute gradient of the func-
tion p(·) i.e. ∇Cp(C) as gradient of the cost function g(·) in Eq. (3) with respect
to C. It can be expressed in closed form as follows

∇Cp(C) = −
∑
i

∑
j

γβi,j(Φi,j(C)− τ)g2(Φi,j(C))∇CΦi,j (9)
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where

∇CΦi,j(C) = ∇Cd
(1)
i,j −

(Γi + Γj)∇Cd
(1)
i,j

d
(1)2

i,j

−
d
(1)
i,j (∇CΓi +∇CΓj)

d
(1)2

i,j

∇Cd
(1)
i,j =

1

d
(1)
i,j

µi,jµ
T
i,jC

∇CΓi =
2

Γi
sym(µi,jµ

T
i,jCCTSi)C

∇CΓj =
2

Γj
sym(µi,jµ

T
i,jCCTSj)C (10)

and sym(Θ) =
Θ + ΘT

2
denotes a symmetry inducing operator for matrix Θ.

In the equations above, we used the shorthand Γi =
√
µT
i,jCCTSiCCTµi,j .

2.2 Subspace Projection of Class Space to Target Space

Once the matrix C is at hand, we focus our attention on recovery of the matrix
B. As mentioned earlier, this can be viewed as a subspace projection matrix
which maps the class space onto the target space. This potentially allows for any
convex subspace projection method to be employed for computing B. Moreover,
literature on multi-dimensional scaling and subspace projection is vast.

Here, we aim at preserving pairwise cluster distances derived from the learned
matrix C. This naturally leads to application of linear and non-linear embed-
ding techniques for dimensionality reduction that attempt to preserve global or
local properties of original data in low-dimensional representations. Here, we use
metric Multi-dimensional Scaling (MDS) due to both, its capacity to preserve
pairwise distances in the class space and the fact that, it is a natural gener-
alization of classical approaches elsewhere in the literature. Moreover, metric
MDS can employ a wide variety of loss functions. We employ the stress func-
tion to measure the error between the pairwise distances in the high-dimensional
class space and the low-dimensional target space. Thus, the cost function h(B)
becomes

h(B) = −
∑
xi∈X

(||yi − yj ||2 − ||B(yi − yj)||2)2 (11)

where || · || is vector norm and we have used shorthand yi = Cxi to denote
instances in the class space corresponding to the pixel color value xi ∈ X . Note
that, in the stress function above, the term ||B(yi − yj)|| is effectively the Eu-
clidean distance in the target space whereas ||yi − yj || is the corresponding
Euclidean distance in the class space.

As a result of the approach taken in previous section, the separation between
pixel pairs belonging to different classes is maximized by C and hence, the
matrix B is expected to preserve these distances. Moreover, the minimization of
h(B) can be performed using various methods such as eigen-decomposition or
pseudo-Newton minimization or conjugate gradient which we employed.
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3 Implementation

Following the previous sections, the training step of our algorithm becomes

1. Compute an initial estimate of matrix C i.e. C(0).
2. Apply steepest descent of Section 2.1 to optimize the cost function p(C).
3. Once C is at hand, compute yi = Cxi for all xi ∈ X .
4. Recover matrix B using MDS to compute zi = Byi for all yi ∈ Y.
5. Train classifier of choice by the transformed training color values zi = Axi.

whereas for a testing RGB pixel value x∗i the step sequence is as follows

1. Compute z∗i = Ax∗i .
2. Feed the transformed testing color value z∗i to the classifier.

In the training step sequence above, we commence by computing an initial
estimate of C by employing Fisher’s class separability criterion and properties
of the matrix span. The reason for our choice hinges in both, the vast amount
of work that shows effectiveness of Fisher’s criterion for purposes of maximizing
class separability and its ease of computation. It is worth noting that Fisher’s
criterion has been used extensively in LDA.

The literature on LDA is extensive, dwelling into a wide variety of variants of
the method itself. For instance, Non-parametric Discriminant Analysis (NDA)
incorporates boundary information into between-class scatter. Boudat et. al. [29]
have proposed a kernel version of LDA that can cope with severe non-linearity
of sample set. On the numerical stability and tractability of LDA, there are
also a number of methods which aim at overcoming singularity of the inverse
intra-class covariance matrix inherent to sub-sampled feature spaces. In a related
development, MMC employs an optimization procedure whose constraint is not
dependent on the non-singularity of within-class scatter matrix. Here, we use
the method of Wang et. al. [30] which employs dual subspaces to construct LDA
classifiers.

To employ Fisher’s criterion, we construct the matrix D. Making use of
notation introduced in Section 2.1, we can define entry indexed i, j of the matrix
D as follows

Di,j =
||µi,j ||

||µi,j(Si − Sj)||
(12)

which is the distance between class centroids over the projected scatters.
With the matrix D at hand, we employ its QR decomposition and develop-

ments to compute C(0) by using subspace spanned by the first three columns
of Q, i.e. bC(0)c as the best second order approximation to C(0). Being more
formal, given ρ(C(0)) = bJ[I | 0]T c, then

ρ(C(0)) = bC(0)c = barg min
JTJ=I

||C(0) − J||2c . (13)

where J is comprised of the first three singular vectors, computed using SVD of Q
such that D = QR is QR decomposition of D and [I | 0]T is a rectangular matrix
conformed by concatenation of the identity matrix I and the empty matrix 0.
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Our choice of SVD for our initialization stems from both, the fact that sin-
gular value decomposition corresponds to the best second-order approximation
to the span and there are efficient methods to compute it.

Once C(0) has been computed, we minimize p(C) making use of steepest
descent optimization in Section 2.1. This is a gradient descent method which
consists of two steps interleaved to find a minimum of the objective function.
Here, we use interleaved steps of gradient calculation and back-tracking line
search along the steepest descent direction until convergence. As a result, we
iterate until ∆C(t) or p(C(t)) in Eq. (8) are sufficiently small, i.e. less than a
predefined threshold ε.

Also, recall that our steepest descent method employs the step size λ. Here,
we follow Armijo’s rule and use the expression

λ =

{
2λ if p(C(t))− p(C(t) + 2λ∆C(t))) ≥ λ||∆C(t)||
1
2λ if p(C(t))− p(C(t) + λ∆C(t))) < 1

2λ||∆C(t)||
(14)

4 Experiments

In this section, we present our experiments on semantic labeling using proposed
class-driven color transformation and a number of alternatives. To illustrate the
utility of our method, we consider a standard multi-class segmentation pipeline
where above transformation is included as a preprocessing step.

Given an input image, we apply our color transformation and use the output
as an input to a pixel-level classifier. Here, in order to analyze robustness of the
transformation to different number of classes and various classifiers, we consider
two publicly available frameworks i.e. TextonBoost [20] and DARWIN [21] im-
plementation. The former only gives unary terms for each class as output whereas
the latter delivers unary and pairwise terms provided by a post-processing step
consisting of a conditional random field (CRF). By using this pipeline, our ex-
periments are conducted on two standard datasets for semantic segmentation i.e.
MSRC-21 [22] and Stanford Background Dataset (SBD) [23]. To our knowledge,
TextonBoost and DARWIN provide competitive results on publicly available
frameworks to the state-of-the-art for these datasets, respectively.

For the purposes of quantitative evaluation, we provide pixel-wise compar-
isons between outputs of the classifiers and ground-truth. To do this, we report
global and per-class average accuracies [22]. Here, the global accuracy represents
the ratio of correctly classified pixels to total number of pixels in test set. Per-
class average accuracy, on the other hand, is computed as the average over all
classes for the ratio of correctly classified pixels in a class to total number of
pixels in the same class.

In our experiments, both pixel-level classifiers under consideration are learned
using training sets of features in [20] for the MSRC-21 and [23] for the SBD. We
use all training samples available to learn projection from the input color data to
the classes. To apply metric MDS, we use a Markov Chain Monte Carlo (MCMC)
random sampler to select a balanced distribution of samples. The class mapping
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Fig. 1. RGB color cube (left) and transformed color cubes for MSRC-21 (middle) and
SBD (r ight) datasets, respectively.

matrix C and subspace projection matrix B are then multiplied to compute
color transformation matrix A.

In Fig. 1, we show the transformed color cubes for both, MSRC-21 and SBD
datasets. As mentioned earlier, note that the mapping induced by A can poten-
tially yield negative values in the target space. This can be appreciated in the
figure, where the transformed cubes have been colored as per the original RGB
value at input taken from the cube on the right-hand panel. These transformed
cubes do have negative values and moreover, they are consistent with the notion
that our approach gives a linear transformation yielded from a convex function.

Recall that both TextonBoost and DARWIN employ positive RGB inputs.
To accommodate this requirement, we bound the transformed color cubes using
the matrix

A∗ = A×H + T (15)

as an alternative to A. In the equation above, H and T are diagonal scaling and
translation matrices, respectively. This is a straightforward scaling-translation
operation in the transformed target space and hence, we do this without any
loss of generality. Further, we compute the diagonal matrices H and T deploying
vertices in the color cubes as an additional training step. This is done by solving
a linear equation where six vertices in the RGB color cube are used to obtain six
degrees of freedom comprised by three diagonal elements of each of the above
two matrices.

For a comprehensive evaluation, we compare accuracy of our method with
the results obtained when our color transformation is not included. We have done
this to set a baseline that can be employed as an indicator of the contribution of
our color transformation to classification performance. As both TextonBoost and
DARWIN employ the Lab color space, our baseline results represents this color
transformation as well. Hence, for the purposes of comparison, we have employed
some other widely used classic color transformations in compute vision including
YCrCb, HSL, Luv [12], I1I2I3 [31] and O1O2O3 [32]. TextonBoost and DARWIN
compute textons on luminance channel and so, in our experiments, it is given



Class-driven Color Transformationfor Semantic Labeling 11

Fig. 2. Sample images for MSRC-21 dataset. In each panel, we show the RGB image
on the dataset (left), corresponding labeling (middle) and transformed image (r ight).

by the L-channels of the canonical color transformations, more specifically, I1
and O3 of the illumination invariant color spaces under study i.e. I1I2I3 and
O1O2O3.

Finally, to further justify our choice of MDS for purposes of subspace projec-
tion throughout the section 2.2, we also explore effect of various subspace pro-
jection methods as alternatives to metric MDS. The methods used here to that
aim are Heteroscedastic Discriminant Analysis (HDA) [16], Maximum Margin
Criterion (MMC), Singular Value Decomposition (SVD) and Kernel Principal
Component Analysis (KPCA). HDA is based on the heteroscedastic two-class
technique using Chernoff criterion and MMC geometrically maximizes the aver-
age margin between classes after reducing number of dimensions.

4.1 MSRC-21 Dataset

The MSRC-21 dataset [22] consists of 591 color images of size 320 × 213 with
corresponding ground truth labeling for 21 object classes. As mentioned above,
we use the same evaluation procedure as [20] e.g. 276 images for training and
256 images for testing.

To illustrate high-distinct transformed colors in comparison to the original
ones with respect to ground-truths on MSRC-21 dataset, we show the trans-
formed color images together with corresponding labeling and RGB color inputs
in Fig. 2. To produce these images, we have used the matrix A∗ as an alternative
to A. This, in turn has the effect of portraying the images as they would be taken
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Table 1. MSRC-21: Summary of per-class results on TextonBoost [20]. Bold values
indicate the highest accuracies.
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MMC 72 98 90 86 81 94 83 72 87 84 89 93 66 45 97 68 88 72 42 80 21 76.5 84.1
HDA 73 98 91 85 82 92 81 71 87 77 88 91 64 48 93 68 89 72 41 81 24 76.0 83.9
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KPCA 72 98 89 85 85 94 86 70 87 82 88 90 66 53 96 56 88 78 38 80 24 76.3 83.9
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Table 2. MSRC-21: Summary of results for subspace projections (left) and color
transformations (r ight) on DARWIN [21]. Bold values indicate the highest accuracies.

Unary Pairwise
Avg. Gb. Avg. Gb.

Baseline 67.1 78.9 70.2 82.8

MMC 68.1 78.5 71.3 82.7

HDA 67.4 77.9 70.8 82.2

SVD 67.3 79.8 69.1 83.5

KPCA 68.3 79.2 71.9 83.4

Ours 68.9 80.0 72.1 84.0

Unary Pairwise
Avg. Gb. Avg. Gb.

Baseline 67.1 78.9 70.2 82.8

YCrCb 65.4 77.8 69.5 81.8

HSL 65.2 77.0 70.3 82.1

Luv 65.9 78.1 70.3 82.1

I1I2I3 62.6 75.2 69.6 81.3

O1O2O3 62.3 75.1 68.9 81.2

Ours 68.9 80.0 72.1 84.0

at input by the classifiers. Note that, the transformed colors are somewhat con-
sistent with the labels. This is expected, since the matrix C is obtained based on
the label information and, later on, the metric MDS used to compute B aims at
preserving induced class distances. For instance, the chair and tree are in almost
the same green spectrum in the RGB image but in the transformed one, green
chair and purple tree provide higher visual separation for different classes.

We summarize our evaluation results in Tab. 1 for the TextonBoost and
in Tab. 2 for the DARWIN. As shown in the tables, our color transformation
outperforms the alternatives with respect to the baseline when applied as a
preprocessing step. This improvement is consistent across a variety of subspace
projection methods and color transformations. Note also that in Tab. 2, pattern
of improvement holds when a pairwise term is applied after the classifier.

We employed publicly available code of TextonBoost to compare the classi-
fication performance with and without our color transformation but due to fine
tuning of parameters, preprocessing of images or randomization functions, ac-
curacy on different platforms/compilers were not consistent with those reported
in [20]. However, our experiments still confirm the advantages of using the trans-
formed images over original ones for classification.
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Fig. 3. Sample images for SBD dataset. In each panel, we show RGB image on the
dataset (left), corresponding labeling (middle) and transformed image (r ight).

4.2 Standford Background Dataset (SBD)

The Stanford Background Dataset [23] consists of 715 color images of size 320×
240 with corresponding ground labeling over 8 classes. In this case, we use the
same evaluation procedure as in [23], i.e. 5-fold cross validation with 572 images
for training and 143 images for testing.

To present the effect of our color transformation on SBD dataset, we show
sample images together with their labeling and RGB color inputs in Fig. 3. As
previous section, we have used the matrix A∗ as an alternative to A to produce
these images. Note that, colors in the transformed images are also somewhat
consistent with the label information. This, as mentioned earlier, is expected
due to the manner in which we have computed matrix A.

Table 3 presents outcomes for TextonBoost and Tab. 4 summarize the results
for DARWIN for different subspace projections and color transformations under
consideration. It is clear that, by using our method as a preprocessing step,
we can consistently improve both unary and pairwise classification accuracies.
Moreover, using metric MDS as subspace projection method outperforms others,
including the baseline.

Therefore, we can conclude that our class-driven color transformation im-
proves classification accuracy when used as a preprocessing step within a multi-
class segmentation framework. Importantly, the improvement is independent of
dataset and number of classes. Further, this improvement is an additional gain
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Table 3. SBD: Summary of per-class results on TextonBoost [20]. Bold values indicate
the highest accuracies.
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Baseline 86 64 89 65 65 76 03 60 63.5 74.0
MMC 86 68 90 72 62 79 01 63 65.2 76.3
HDA 86 66 91 72 65 80 02 65 65.8 76.7
SVD 86 67 91 73 64 80 06 63 66.3 76.7
KPCA 86 68 91 73 65 80 03 61 65.9 76.6
Ours 86 68 90 68 67 79 09 65 66.576.8

Table 4. SBD: Summary of results for subspace projection techniques (left) and color
transforms (r ight) on DARWIN [21]. Bold values indicate the highest accuracies.

Unary Pairwise
Avg. Gb. Avg. Gb.

Baseline 68.3 78.5 70.2 81.5

MMC 69.6 79.9 71.7 82.9

HDA 68.9 79.3 71.2 82.4

SVD 69.2 79.8 70.9 82.8

KPCA 68.5 78.8 70.7 82.0

Ours 70.4 81.4 72.5 84.2

Unary Pairwise
Avg. Gb. Avg. Gb.

Baseline 68.3 78.5 70.2 81.5

YCrCb 68.7 77.1 70.7 80.2

HSL 68.0 76.9 70.0 80.1

Luv 68.3 76.9 70.5 80.1

I1I2I3 67.1 75.9 68.6 78.7

O1O2O3 66.7 75.9 68.5 79.0

Ours 70.4 81.4 72.5 84.2

over the classifier output, hence, not being exclusive of other common post-
processing steps such as the application of CRFs. Finally, it is worth mentioning
that this improvement comes at a negligible computational cost.

5 Conclusion

In this paper, we derived an image color transformation based on label infor-
mation of classes in dataset under study. We did this by posing the problem
in terms of a composition of two mappings. The first of these, maps the image
color onto a space spanned by the class set. We computed this mapping by opti-
mizing an objective function formulated in terms of the aggregation of pairwise
distances within and between the classes using a steepest descent scheme devoid
of matrix inversions. The second mapping corresponds to transforming data in
the class space to a target space, which we calculated making use of metric
multi-dimensional scaling. Our experiments confirm the applicability of our al-
gorithm to enhance global and average precisions of pixel-wise classifiers when
it is employed as a general preprocessing step for segmentation and labeling.
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